Measures and Duality

Manuel Hoff

These are notes for a talk I am giving in the PhD-seminar on Local Langlands for GLo taking place in the
summer term 2023 in Essen. The main reference for this talk is | ].

I thank the organizer of the seminar, Luca Marannino, for helping me with the preparation. Also, use these
notes at your own risk, they probably contain mistakes (and feel free to tell me about these mistakes)!

1 Notation

We fix a non-archimedean local field F' with ring of integers o, maximal ideal p C o, uniformizer w € p, units
Ur = 0* and residue field k = o/p of characteristic p and cardinality g. We consider the algebraic subgroups

s={( 0= {0 O} {0 Dpw={( D) o= {(6 e

called the standard Borel, the standard torus, the unipotent radical of the standard Borel the unipotent radical
of the opposite of the standard Borel (relative to the standard torus) and the center, respectively. We also
consider the standard Iwahori subgroup

I := GLa(0) XGr,) Bk) = {(Z Z)

a,bc Up,c€o,c Ep} C GLy(F).

Finally, G, G1, G2 always denote locally profinite groups and X,Y denote locally profinite sets.

2 Some group theory
The reference for this section is | , Sections 7.2, 7.3].
Proposition 2.1 (Iwasawa decomposition). We have

GLy(F) = B(F) GLy(o).

Proof. The quotient B\ GLs is a proper scheme (actually it is the projective line). The valuative criterion for
properness thus implies that the map

B(0)\ GLz(0) = (B\ GL2)(0) — (B\ GL2)(F) = B(F)\ GLy(F)
is a bijection. 0
Corollary 2.2. The quotient B(F)\ GLa(F') is compact.

Proof. By Proposition 2.1 the map GLy(0) — B(F)\ GLy(F) is surjective. As GLy(0) is compact this gives the
desired result. O

Proposition 2.3 (Cartan decomposition). We have
w® 0
GLy(F)= || GLa(o) ( 0 wb> GLsy(0).
a,beZ,a<b
Proof. This follows immediately from the elementary divisor theorem. O

Corollary 2.4. For any compact open subgroup K C GLo(F) the quotient G/K is countable.



Proof. Tt suffices to show this for a single compact open subgroup, so we may assume that K = GLy(0). Then
K\ GLy(F)/K is countable by Proposition 2.3. Moreover, every double coset KgK is a finite union of left cosets
9;: K so that also GLa(F')/K is countable. O

Proposition 2.5 (Iwahori decomposition). The multiplication map
(INN'(F)x(INT(F))x (INN(F)) =1
is a bijective homeomorphism, and the same is true for any reordering of the three factors.
Proof. This can be checked by an explicit calculation. O
Remark 2.6. Note that we have I N N'(F) = ker(N(o0) = N(k)), INT(F)=T(o) and I N N(F) = N(o).

Remark 2.7. All of the above decompositions can be appropriately generalized from GLo to the setting of
reductive groups.

3 Haar measures

The reference for this section is | , Sections 3.1 - 3.4 and 7.4 - 7.6].

Definition 3.1. « We denote the space of compactly supported and locally constant C-valued functions on X
by C°(X).

e A measure on X is a C-linear map
I:C*(X)—=C

such that I(f) € R for all f € C°(X) that are valued in R>o.

o Given an open subspace X’ C X we have C(X’) C C°(X) via extension by 0, and using this we can
restrict measures on X to measures on X'.
We will typically denote a measure by a symbol like p and the associated map by

for () = /X f() dpa(z)

Remark 3.2. Given a measure p on X and a compact open subset A C X we write p1(A) :== I,,(14). Then p is
uniquely determined by p(A) for all A. In fact, giving a measure g on X is equivalent to giving a function

% {compact open subsets of X} — R>o

such that (AU B) = u(A) + p(B) for all disjoint A, B.

Remark 3.3. The subset Meas(X) C C°(X)* of measures on X is stable under addition and multiplication by
scalars in R>¢. In other words, it is a cone.

Remark 3.4. We have a natural isomorphism
CEX)@CI(Y)2CX(X xY),  fi®far ((2,y) = filz)fa(y)).

Thus, given measures p and v on X and Y we can define a measure 4 ® v on X x Y by declaring

Ligv(f1 @ f2) = L(f1)L.(f2).

For a general function f € C2°(X x Y') we then have

/Xxyf(f”y)d(ll@? (,9) //fa:ydu ) dpu(x //fa:ydu )du(y).

Definition 3.5. « We define two actions Ag and pg of G on C°(G), that are respectively given by

(Aa(9)f)(z) = flg 'x) and (pa(9)f)(x) = f(zg)

for g,z € G and f € C°(G). Note that both representations are smooth.

o A measure p on G is called a left (resp. right) Haar measure if p # 0 and I,(Ag(9)f) = I.(f) (resp.
Lu(pc(9)f) = I.(f)) for all g € G and f € CZ°(G).



Proposition 3.6. There exists a left Haar measure for G. It is unique up to a factor ¢ € Rsg.
Moreover, if p is a left Haar measure on G then the measure on G given by

fH/Gf(xl

Lemma 3.7. Let H C G be an open subgroup and let p be a left Haar measure on G. Then the restriction of p
to H is a left Haar measure on H.

is a right Haar measure for G.

Definition 3.8. Let u be a left Haar measure for G. For g € G, the measure on G given by

S /G f(xg) du(z)

is again a left Haar measure, so that there exists a unique constant d;(g) € R such that

/fxgdu /f ) du(

for all f € C°(G). Then we define the modular character of G (or module of G) as the map dg: G — Rso. It
is in fact a continuous character (and even trivial on any compact open subgroup K C G).

We call G unimodular if 6¢ = 1. This is equivalent to saying that a left Haar measure on G is also a right
Haar measure (and the other way around). If G is unimodular, we also just say Haar measure without specifying
left or right.

Lemma 3.9. Let 1 be a left Haar measure on Gy and let ps be a left Haar measure on Go. Then 1 ® po is a
left Haar measure on G1 x Ga.

Lemma 3.10. Suppose we are given an action ¢: G1 — Aut(G2) so that we can form the semidirect product
G1 X Go. Suppose furthermore that we are given left Haar measures py and ps on Gy and Gy respectively. Then
w1 @ po is a left Haar measure on Gp X Gs.

If we moreover define 04: G1 — Rq by the formula

d(g) : f(o(g9)(x)) dpuz(z) = : f(z) dpa(x)
for g € Gy and f € C°(Ga), then we have

6G1 X Go (91,92) = 601 (gl) . 6G2 (92) : (5(75(91_1)
for (91,92) € G1 x Goa.
Example 3.11. We now give a few important examples.

o We denote by pp the Haar measure on F' that is normalized by pp(0) = 1. We then have pp(a +p™) = ¢ "
for any a € F and n € Z.

e A Haar measure pupx on F'* is given by the formula

[ H@aur @ = [ f@lel ™ dur (o)

o A (left and right) Haar measure pgr,(ry on GL2(F) is given by the formula

/ F(2) dpicna () = / £(@)||det(x)]| 2 duZt(a).
GL2(F) My (F)

In particular GLg(F') is unimodular.
e Aswehave N(F) X N'(F)2 F, Z(F) 2 F* and T(F) = F* x F*, we also know what their Haar measures
are.
o The group B(F) can be written as a semidirect product B(F) = T(F) x N(F) so that we obtain a left Haar
measure jip(Fy = fr(F) & pn(r) for it.
However, B(F') is not unimodular. Its modular character is given by

_ a c
o) =la 9= (G 5)

e The restriction of the Haar measure on GLg( ) to GL2(0) (and consequently also the one to I) coincides
with du$? as ||det(z)|| = 1 for x € GLg(0). The restricted Haar measure p; on I can also be expressed as

J @@ = [ ][ otn) dun) dure) e ()

using the Iwasawa decomposition.



4 The contragredient representation

The reference for this section is | , Sections 2.8 - 2.10].

Definition 4.1. We define a functor (-)¥: Rep(G)°P — Rep(G) as follows: For a smooth G-representation 7 we
have the dual space V. = Hom¢(V,, C) that is equipped with a G-action

G = Aute(VY), g (<p = (T (g)e: v w(ﬂ(g‘l)v)))

However, the representation 7* is not necessarily smooth. We thus define 7V = (7*)®°. We call 7V the
contragredient or the smooth dual of .
We denote the natural evaluation pairing Vv x V; — C by (-,-). It induces a natural morphism of abstract
G-representations
Sprm — 7w, v (o (0,v) = 9(v))

that automatically has image inside 7Vv C 7V*.
Proposition 4.2. We have the following properties (where 7 always denotes a smooth G-representation):

e The natural morphism VX — (VE)* is an isomorphism.

VvV

o The evaluation morphism 6,: m — 7" is injective.

e The morphism 6, is surjective (i.e. an isomorphism) if and only if 7 is admissible.
o The functor (-)V: Rep(G)°P — Rep(QG) is ezact and faithful.

o Ifw is irreducible, then so is w. The converse is true whenever m is admissible.

5 The duality theorem

The reference for this section is | , Sections 3.4 - 3.5 and 7.7]. We fix a closed subgroup H C G.

Idea 5.1. We would like to understand how taking duals interacts with inducing representations from H to G.
Given a smooth representation o of H one could expect to have a natural isomorphism

md$ (oV) = (C—Indg a)v

that is induced by a (G-invariant) pairing of the form
‘/Ind%(o'v) X ‘/C—Indg o 07 (f7 fl) = H\G<f(x)’ f/(l')> d,u(x)

Note that the function (f(x), f’(x)) is indeed well-defined and compactly supported on H\G.

The problem is now that we don’t know what measure p we should use to integrate. Maybe we would expect
that there exists an essentially unique such measure that is invariant under right translation by G. But typically
this is too much to ask for...

Definition 5.2. We set
6H\G = 6g‘H . (5;111 H — R>0.

Then we define C°(H\G) to be the space of locally constant functions f: G — C that are compactly supported
modulo H and such that

f(hg) = 5H\G(h)f(9)

for all h € H and g € G. Similarly to before we have an action pg\¢ of G on C°(H\G) by right translation.
pPH\G I8 & smooth representation.

Remark 5.3. The notation in the definition is confusing. The elements of C°(H\G) are not functions on H\G
but rather functions on G that transform in a certain kind under left translation by H.

Proposition 5.4. Let ug be a left Haar measure on H and let ug be a right Haar measure on G.

o The map
PG = pmas [ (fr T~ /H5G(h)71f(h~’6) duH(h)>

is a well-defined and surjective morphism of smooth G-representations.



o The morphism I, : CX(G) — C factors through C°(H\G) to give

c

I 1 O (H\G) — C, [ f(@) dpmg(@).

HrH\G *

H\G
o Luy o 18 the unique (up to a scalar ¢ € Rso) non-trivial morphism C°(H\G) — C that satisfies
IPLH\G (pH\G(g)f) = IlLH\G(f)a f € CSO(H\G)MQ €G
and

IHH\G(f) 2 O, f € CSO(H\G)vf > 0.

Remark 5.5. This is again a warning about confusing notation. pz\¢ is not a measure on H\G, although we
will think of it as such. And fH\G f(z)dpm\e(x) is not an integral on H\G.

Theorem 5.6 (Duality Theorem). Fiz pug\g as in Proposition 5.4 and let o be a smooth representation of H.
We have a well-defined G-invariant pairing

‘/Indg(&g\c@o’v) X ‘/C—Indg.:r - Ca (f7 f/) = H\G<f(x)7f,(x)>dMH\G(z)

that is natural in o. This pairing induces an isomorphism of smooth G-representations
Ind$ (bme®aY) = (C-Indfl O‘)v.

Example 5.7. We will be intersted in applying Theorem 5.6 in the situation where G = GLy(F') and H = B(F')
and the representation o really is a representation of T'(F) (that we view as a representation of B(F') that is
trivial on N(F)). In that case the quotient H\G is compact by Corollary 2.2 so that c-Ind% ¢ 2 Ind o and
dm\a = 51}1. Thus Theorem 5.6 then gives

GL2(F) c—1 ~ aLe(F) _\V
Ind g (5B(F)®UV) = (IndB(;) a) )
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